

JASON - JGOMAS

JASON-

JGOMAS

Manual

Jason – JGOMAS Manual 1

1. Introduction
This paper presents a Multi - Agent social simulator System based on JADE and Jason that has been developed

to meet different purposes. The principal is to serve as a starting point for a study of the feasibility of integra-

tion of Multi-Agent Systems (MAS) and Virtual Reality (VR). Thus, combines a 3D graphical display with a MAS

which can be used in a qualitative evaluation of the current implementation of the MAS.

So, JGOMAS (Game Oriented Multi-Agent System based on JADE and Jason) is a test platform to study the

integration between MAS and RV, also allowing it to be used as a validation tool for MAS.

A capture the flag kind of game has been selected as simulation of the environment in the MAS developed. In

this kind of games, two teams (red and blue, allies and axis) must compete to capture the opponent's flag. This

type of game has become a standard in almost all multi-player games that have have appeared since Quake

game.

It is very easy and intuitive to implement MAS in such games, because every soldier can be seen as an agent.

Moreover, a team of agents must cooperate to achieve the objective of the team, competing with the other

team.

In our version of capture the flag, the two teams are the allies and axis. Allied agents must go to the base of the

shaft, capture the flag and return to their base, in which case they will win the game. On the other hand, agents

of the shaft must defend their flag and, if captured, must return it to the base. The game has a maximum time,

after which, if the flag has not reached the Allied base, Axis team win the game.

2. Jason – JGOMAS Architecture
JGOMAS is primarily composed of two subsystems. On the one hand, there is a multi-agent system with two

different kinds of running agents. One of these types of agents handling the current game logic, while the oth-

ers belong to one of the two teams, and will be playing the full game. Actually, this subsystem is a layer that

Jason – JGOMAS Manual 2

runs on top of a platform for multi-agent specifically JADE and can take advantage of all the services provided

by JADE.

Jason - JGOMAS, which is the current version of the JGOMAS platform allows the use of Jason agents to form

teams of participating agents.

On the other hand, an ad-hoc graphical display (Render Engine) to display a 3D virtual environment has been

developed. According to the specific requirements of (high computational cost for short periods) graphics ap-

plications, this graphic display has been designed as an external module (and not as an agent). It has been

written in C++ using the OpenGL graphics library.

Figure 1 shows a JGOMAS architecture where all components and their relationships can be seen: the JADE

platform as support for JGOMAS Multi-Agent System, which is comprised of agents, one of them acting as

controller other agents, and as an interface for the application of graphical display.

The Multi-Agent System JGOMAS can be viewed as a kernel (basic package), which provides an interface for

the graphical display to connect to the current game.

2.1. Agents Taxonomy
We can establish the following taxonomy of agents within JGOMAS according to their functionality:

• Internal agents: are those who form themselves the JGOMAS management platform. Their behaviors are

pre-defined, and the user cannot change them. These agents are JADE agents, and there exist the follow-

ing types:

• Manager: This is a special agent. Its main objective is to coordinate the current game. In addition, you

must answer requests from other agents. Another task that it is responsible for, is to provide an inter-

face for graphics viewers. Therefore, any instance of the graphical display can be connected to cur-

rent game and display the 3D virtual environment.

• Pack: There are three different types of packs, the medic packs (used to give health to agents), ammo

packs (used to give ammunition to agents) and objective packs, i.e. the flag to capture. All these

agents are dynamically created and destroyed with the exception of the flag (there exists only one

flag throughout the game and cannot be destroyed).

• External agents: They are the current players. They have a predefined set of basic behaviors that the user

can modify or even add new ones. These agents must be developed in Jason. An agent can play a unique

role in the current game. There are three roles defined, but the user can define new, each providing a

unique service. Thus, these agents or troop agents, specialize in the following three roles:

• Soldier: provides a backup service (the agent goes to help to his team-mates).

• Medic: provides a medic service (the agent goes to give medic packs).

• FieldOps: provides an ammo service (the agent goes to give ammo packs).

A domain like capture the flag enables a simple and entertaining way to establish a testbed either for algo-

rithms and optimizations individually on each agent and for competitive and cooperative strategies between

teams going.

External agents are integrated into the virtual environment, allowing the interaction between them (through

the perception of peers / nearby enemies) which can lead to cooperation / coordination with partners of the

same team. Also, being located in this virtual environment, must take into account the characteristics of the

terrain in which they are located (difficulty moving, walls ...).

Jason – JGOMAS Manual 3

All communication that takes place between the agents that make up the platform is performed by passing

messages according to protocols established by the FIPA ACL.

Figure 1: Jason-JGOMAS Architecture

2.2. Maps
JGOMAS can use different maps to define your virtual environment. These maps, by default, are of size 256 x

256, so that the position of the agents is given by its coordinates (x, y, z), where x, z take values between 0 and

255, while in the maps supplied, y is always equal to 0 (these maps do not have height).

Each agent has partial access to the map where the game is played, since despite having access to static infor-

mation about it, can only perceive objects that are at a distance (within the "cone of vision").

The maps are stored in the bin\data\maps folder of the distribution. In this folder there is a subfolder for each

map with the name map_XX, where XX is the number of the map. In this folder there are several files that de-

fine the map. For example, the content of the map_04 folder is as follows:

• map_04_cost.txt: This file defines the walls of the map by means of * to indicate it. The content of this file

is:

 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *

 Jason
Agents

Jason – JGOMAS Manual 4

 * ** **
 * * *
 * * * *
 * * * *
 * * * *
 * ******** ** *
 * * ***** *
 * * * *
 * *** ****** * *
 * * *
 * *
 * * *

• map_04_terrain.bmp: This file defines the artistic look of the map, as you can see in the image on the left

of Figure 2.

• map_04_cost.bmp: This file defines the walls of the map using a black and white image, where black rep-

resents the wall, as you can see in the image on the right of Figure 2.

Figure 2: Left: map_04_terrain.bmp - Right: map_04_cost.bmp

• map_04.txt: This file contains the definition of different settings for the MAS and graphic display:

• JADE_OBJECTIVE: Flag initial location.

• JADE_SPAWN_ALLIED: Allied base location.

• JADE_SPAWN_AXIS: Axis base location.

• JADE_COST_MAP: Size and name of the cost file.

• RENDER_ART_MAP: Size and name of the file containing the artistic look of the map.

• RENDER_COST_MAP: Size and name of the file containing the artistic look of the map costs.

• RENDER_HEIGHT_MAP: Size and name of the file containing the artistic look of the map heights.

The content of this file is the following:

[JADE]
JADE_OBJECTIVE: 28 28
JADE_SPAWN_ALLIED: 2 28 4 30
JADE_SPAWN_AXIS: 20 28 22 30
JADE_COST_MAP: 32 32 map_04_cost.txt
[JADE]

[RENDER]

Jason – JGOMAS Manual 5

RENDER_ART_MAP: 256 256 map_04_terrain.bmp
RENDER_COST_MAP: 32 32 map_04_cost.bmp
RENDER_HEIGHT_MAP: 32 32 map_04_heightmap.bmp
[RENDER]

3. Tasks
A task is something that an agent has to perform in a particular position of the virtual environment. There are

various types of tasks, which are according to the different actions that an agent can perform in the virtual

environment, being the main ones:

• TASK_GIVE_MEDICPAKS: A medic must generate packets of medicine in a particular place (the position of

the agent who requested it and who has agreed to go to give them).

• TASK_GIVE_AMMOPAKS: A fieldops must generate packets of ammo in a particular place (the position of the

agent who requested it and who has agreed to go to give them).

• TASK_GIVE_BACKUP: A soldier should go to help a teammate to a particular place (the position of the agent

who requested it and who has agreed to give it go).

• TASK_GET_OBJECTIVE: The agent, from the attacking team or ALLIED, must go to the starting position of

the flag for it. If he manage to grab the flag, this task becomes going back to their home base.

• TASK_GOTO_POSITION: The agent must go to a specific location.

A task is associated in addition to its type, the agent that causes the task (the agent itself or the agent who

requested that he should give something like life ...), the position where it should be performed, priority and

any possible contents additional. Always the highest priority task is launched. You can redefine the priority of

each type of task.

The tasks the system is implemented, not the user, it can only add tasks to the list of active tasks the agent:

• JASON: a plan is used to add a task: add_task
!add_task(task(TaskPriority, TaskType, Agent, Position, Content))
!add_task(task(TaskType, Agent, Position, Content))

Examples (two options):

!add_task(task(1000, "TASK_GET_OBJECTIVE", M, pos(ObjectiveX, ObjectiveY, ObjectiveZ),
""));
!add_task(task("TASK_GET_OBJECTIVE", M, pos(ObjectiveX, ObjectiveY, ObjectiveZ), “"));

Such objectives trigger the plan creating the task. The second one assigns the priority defined by the

agent.

4. Execution Loop
• Each JGOMAS external agent executes a FSM as the one in Figure 3:

• STANDING: The agent does not have any triggered task.

• GO_TO_TARGET: The agent has triggered a task and he is moving to the position where he has to do it.

• TARGET_REACHED: The agent has reached the position where he has to do the triggered task, and he is

doing the actions indicated in the task.

Jason – JGOMAS Manual 6

Figure 3: FSM defining JGOMAS external agents behaviour.

5. Interface (API)
The interface (API) for working with jGomas is composed of .asl files written in Jason that contain the different

agents (each one with its own beliefs, goals, and behaviors). Inside these files, jgomas.asl includes the non-

modifiable behaviors of the agent. To modify the behavior of the agent the files with a name following the

pattern jasonAgent_TEAM_TYPE.asl have to be modified, where TEAM refers to the side of the agent (ALLIED,

AXIS), and TYPE is the type of the agent (soldier, MEDIC, FIELDOPS). Therefore, there are 6 files covering all

possible types of agents:

 jasonAgent_ALLIED.asl

 jasonAgent_ALLIED_MEDIC.asl

 jasonAgent_ALLIED_FIELDOPS.asl

 jasonAgent_AXIS.asl

 jasonAgent_AXIS_MEDIC.asl

 jasonAgent_AXIS_FIELDOPS.asl

Regarding agent beliefs, the main ones are:

 tasks(task_list): Contains the list of active tasks of the agent. Ex:

tasks([task(1000,"TASK_GET_OBJECTIVE","Manager",pos(224,0,224),""),task(1001,"TASK_WALKING_PATH",
"A2",pos(204,0,228),"")])

In this example the list has two active tasks:

- task(1000,"TASK_GET_OBJECTIVE","Manager",pos(224,0,224),"") that indicates that has to get the ob-

jective (the flag) that is in the position pos(224,0,224). The priority assigned to this task is 1000.

- task(2000,"TASK_GIVE_MEDIPAKS","A2",pos(204,0,228),"") that indicates that has to go to the posi-

tion pos(204,0,228) where the agent A2 is waiting for medicine packs (the agent with this active task is

an agent). The priority assigned to this task is 2000.

Jason – JGOMAS Manual 7

 fovObjects(object_list): Contains the list of objects currently seen by the agent. The structure of an

object is [#, TEAM, TYPE, ANGLE, DISTANCE, HEALTH, POSITION].

Example: [1,200,1,0.58,14.76,78,pos(214,0,219)], the object 1 of the team 200 (AXIS), type 1 (agent), with angle

0,58, with a distance of 14,76, a health 78 and its position is pos(214,0,219)

Note: The TEAM values are: 100 (Allied), 200 (Axis), 1003 (flag)

 state(current state): This belief is used to indicate the state of the agent in his state machine:

standing, selecting which task to do or waiting; go_to_target, going to its next target; tar-

get_reached, it has reached the target; quit, has to finish.

 my_health(X): Stores the health of the agent. The initial, and maximum, value is 100. When this va-

lue reaches 0, the agent dies.
 my_ammo(X): Stores the amount of bullets of the agent. The initial value is 100.

 my_position(X,Y,Z): Stores the last position known by the agent.

The different modifiable plans of the agents are:

 !perform_look_action

This object is invoked when the agent looks around and update the list of surrounding objects fo-

vObjects(L). It would be necessary to implement the plan associated to the creation of this event to

be able look what is around.

 !perform_aim_action

This objective is triggered if there is an enemy to aim, which can be used to take a decision about what

to do with the aimed agent. An easy implementation of the plan is available. It is interesting to improve

this plan to take a more refined decision about who to aim.

 !get_agent_to_aim

This objective is invoked after !perform_look_action, and it would be used to decide if there is any en-

emy to aim. An easy implementation of the associated plan is available. It is interesting to improve the

mentioned associated plan to take a more refined solution about who to aim.

 !perform_no_ammo_action

This objective is triggered when the agent shoots and has no ammo. It is necessary to implement the

associated plan to take a decision. For example, to run.

 !perform_injury_action

This objective is triggered when the agent is shot. It is necessary to implement the plan associated to

the creation of this event to take a decision. For example, run if the agent has a low life value.

 !performThresholdAction

This objective is triggered when the agent has less life or bullets than the thresholds

my_ammo_threshold(X) and my_health_threshold(X). An easy implementation of the associated plan is

available, which asks for help to medics or fieldops of its team. It is interesting to improve the plan to

take a more refined solution.

 !setup_priorities

This objective is triggered during agent initialization to fix agent task priorities. Each agent has its own

priorities. A simple implementation is available. It is interesting to modify it to add new tasks or modify

the priorities to have agents that behave in a different way.

Jason – JGOMAS Manual 8

 !update_targets

This objective can be used to update the tasks and its priorities. It is invoked when the agent changes

to the standing state and has to choose a new task among the available ones. It is necessary to imple-

ment the plan associated to the creation of this event.

6. Communication
It is necessary to highlight that an agent plays only one role during the whole game, if an agent A1 is created

as a soldier of the type Soldier and belong to the AXIS side, it will be for the rest of the game.

Each role has different features and offers specific basic services that can be improved. Indicating the role and

the basic services offered by an agent is carried out at the initialization, using a process known as Registration.

Nevertheless, an agent can add new services during the development of the game.

6.1. Registration
A role has to register a service to allow the other role to request it. Registration is carried out using the internal

function: .register("JGOMAS", "type")

In this example, it is registered the service “type” by the agent who invoked the function. The registration is

used to register in the DF a service of the type “type” by the agent who executed it.

Ex: .register("JGOMAS", "medic_AXIS”); registers the service “medic_AXIS” into the DF.

Exists a set of existing services depending on the role played by the soldier agent:

 In the case of ALLIED agents, they register in a transparent way that they belong to this side so the rest

of agents of their team may know about that.

 .register("TEAM", "ALLIED");

 In the case of allied soldier agents, it is registered the service "backup_ALLIED":
.register("JGOMAS", "backup_ALLIED");

In the case of allied medic agents, it is registered the service "medic_ALLIED":

 .register("JGOMAS", "medic_ALLIED");

In the case of allied fieldops agents, it is registered the service "fieldops_ALLIED":

.register("JGOMAS", "fieldops_ALLIED");

 In the case of AXIS agents, they register in a transparent way so the rest of players in their team may

know.

 .register("TEAM", "AXIS");

In the case of axis soldier agents, it is registered the service "backup_AXIS":

 .register("JGOMAS", "backup_AXIS");

Jason – JGOMAS Manual 9

In the case of axis medic agents, it is registered the service "medic_AXIS":

.register("JGOMAS", "medic_AXIS");

In the case of axis fieldops agents, it is registered the service "fieldops_AXIS":

.register("JGOMAS", "fieldops_AXIS");

Once an agent has registered a service, it is posible for an agent of its same team to check which agents of

its team offer a specific service.

How to know what services are available from an agent?

The following internal action is executed .my_team(type,list)

This action returns the list of agents of the team of the invoker agent that are available through the yellow

pages (DF) from the type “type” (excluding itself).

In the example: .my_team("medic_AXIS", E)

Supposing that is executed by an agent of the“AXIS” team, it would return the list E that contains the

alive doctors of the team.

In this way it is posible, for example, to know the name of the agents of the team. In order to do so, this in-

ternal function has to be invoked:

 .my_team(“AXIS", E); ó
 .my_team(”ALLIED", E);

Then, using the list E, the agent can carry out the actions it considers as adequate.

Usage example

 …
 .my_team("AXIS", E1);
 .my_name(Me);
 .println("My team is: ", E1, " and I am: ", Me);
 .length(E1, X);
 if (X==0) { .println(“I am alone”); }

In this case an agent checks the agents of its team. If the list is empty, it means that it is alone.

6.2. Coordination

JGOMAS is provided with mechanisms that allow agent coordination. It can be of one of these two types:

Jason – JGOMAS Manual 10

 No communication (implicit): It is achieved by sensing the environment. When an agent looks around

itself the objective !perform_look_action is triggered. By rewriting the associated plan it can be de-

cided what to do according to the perception.

 With communication (explicit): In this case it is used the message passing using the internal action

.send_msg_with_conversation_id

 .send_msg_with_conversation_id (Rec, Perf, Cont, ConvId)

where:

 Rec receiver of the message (could be a list)

 Perf performative (tell, untell, achieve…)

 Cont content

 ConvId Conversation Id (used in Jade)

Usage example: A1 wants to send a message to its team telling them to go to (to help, coordinate, regroup…)

The code would be the following:

 …
 ?my_position(X,Y,Z);
 .my_team("AXIS", E1);
 .concat("goto(",X, ", ", Y, ", ", Z, ")", Content1);
 .send_msg_with_conversation_id(E1, tell, Content1, "INT");

NOTE: “INT”is a made up conversation identifier, and its usage is recommended because there exist certain

internal identifiers that may lead to an undesired agent behavior is they are used.

Following the same example, the rest of agents of the team will have a plan with this shape:

+goto(X,Y,Z)[source(A)]
 <-
 .println("Received a message of the type goto from ", A);
 .

In this case the agent that receives the message only prints the received message, but a more complex action

may be carried out, such as change the task to make by the agent that receives the message. In this case, the

code would be:

+goto(X,Y,Z)[source(A)]
 <-
 .println("Received a goto message from ", A);
 !add_task(task("TASK_GOTO_POSITION", A, pos(X, Y, Z), ""));
 -+state(standing);
 -goto(_,_,_) .

Jason – JGOMAS Manual 11

7. Appendix: Jason Eclipse Plugin

7.1. Instalation

In order to install the Jason plug-in for Eclipse you should follow the steps below and have Eclipse version 3.7.0

(Indigo) or greater.

Step 1

Download the latest version of Jason at the link: http://sourceforge.net/projects/jason/files/

Step 2

After the download, unpack it in any directory of your machine.

Step 3
If you had never run Jason on your computer, execute the file "lib/jason.jar" by double clicking over it. You also

could execute this file by with the following command: java -jar lib/jason.jar

The following figure shows the window that you have to see after you run the file jason.jar. Make sure about

the directories of the libs. We suggest you only change the "Java Home" directory. The others are automatically

filled out, but feel free to change them if you want to.

http://sourceforge.net/projects/jason/files/

Jason – JGOMAS Manual 12

Step 4
Finally you could install the Jason plugin for Eclipse opening the Eclipse platform and going to the option "In-

stall New Software..." at the "Help" menu:

Step 5
So, the following window will appear.

Step 6
Click over the "Add" button, and fill out the form as shown in the next figure. The parameters are

Name: jasonide

Location (Eclipse Indigo): http://jason.sourceforge.net/eclipseplugin/

Location (Eclipse Juno/Kepler): http://jason.sourceforge.net/eclipseplugin/juno/

Jason – JGOMAS Manual 13

To finish, click on the "OK" button.

Step 7
Tick the option "jasonide" and then press the "next" button. So, you have to wait a moment while Eclipse

search the dependences.

Jason – JGOMAS Manual 14

Step 8
In the next windows just press the "next" button again.

Step 9

The last window that will be shown for you is about the license. Tick the option "I accept the terms of the li-

cense agreements" and then press the "finish" button. Then the installation is proceeded, it could take several

minutes, so please wait.

Step 10
In the end of these process will be shown a window in order to complete the installation. Choose the option

"Restart Now".

Step 11
Now you have all set. In order to test the installation of the plug-in, we suggest the creation of a simple hello

world project. You could do it in the menu (File > New > Jason Project) or (File > New > Other > Jason > Jason

Project).

Jason – JGOMAS Manual 15

Step 12
Fill out the field "Project name" and press the "Finish" button.

Jason – JGOMAS Manual 16

Step 13
If everything is fine, you will have your first project created!

Step 14
Now you can run the application by pressing the Run button.

Jason – JGOMAS Manual 17

Step 15
The result will be a "hello world" message in your screen.

7.2. How to créate an agent

Step 1
Click on the source folder named "src/asl" using the right button and go to the option New > Agent.

Step 2
Fill out the form. The only required field is the name of the agent. After it, press the "Finish" button.

Jason – JGOMAS Manual 18

Step 3
The agent will be created and will be automatically added in the mas2j file.

Jason – JGOMAS Manual 19

7.3. How to create an internal action

Step 1
Click on the source folder named "src/java" using the right button and go to the option New > Internal Action.

Step 2
Fill out the form. An internal action is a java class, so the only required field is the name of the class.

Jason – JGOMAS Manual 20

Note: we suggest you to give a name using the first letter in lower case and also naming the package.

Step 3
The internal action will be created.

7.4. How to create an artifact

Note: A CArtAgO artifact is only used if you are using the CArtAgO as an environment for your MAS.

Step 1
Click on the source folder named "src/java" using the right button and go to the option New > CArtAgO Arti-

fact.

Jason – JGOMAS Manual 21

Step 2
Fill out the form. A CArtAgO artifact is a java class, so the only required field is the name of the class.

Note: in contrast to an internal action, in this case you could use a name with a first letter in upper case, and

also we suggest you to name the package.

Step 3
The CArtAgO artifact will be created.

Jason – JGOMAS Manual 22

7.5. How to import a Jason project

Step 1
Click on the "File" menu and go to the option "Import...".

Step 2
Select the option Jason > Jason Project.

Jason – JGOMAS Manual 23

Step 3
Click on the "Browse" button and choose the directory of the project, tick the project that you wish to import

and finally press the "Finish" button.

Jason – JGOMAS Manual 24

7.6. How to export a Jason project

Step 1
Click on the project using the right button and go to the option "Export...".

Step 2
Select the option Jason > Jason Project.

Jason – JGOMAS Manual 25

Step 3
Click on the "Browse" button and select the directory that you wish to export the project and press the "Finish"

button.

Jason – JGOMAS Manual 26

7.7. How to update the Jason plugin
You have two ways to update your Jason eclipse plugin.

First way
Simply click on the "Help" menu and go to the option "Check for Updates".

Second way

Step 1
Click on the "Help" menu and go to the option "About Eclipse SDK".

Jason – JGOMAS Manual 27

Step 2
Press the "Installation Details" button.

Step 3
Select the "jasonide_feature" and click on the "Update..." button.

Jason – JGOMAS Manual 28

7.8. How to unistall the Jason plugin

Step 1
Click on the "Help" menu and go to the option "About Eclipse SDK".

Step 2
Press the "Installation Details" button.

Jason – JGOMAS Manual 29

Step 3
Select the "jasonide_feature" and click on the "Uninstall..." button.

Step 4
Confirm the process of uninstallation pressing the "Finish" button.

Jason – JGOMAS Manual 30

Step 5
In order to complete the uninstallation press the "Restart Now" button.

You will find more information at http://jason.sf.net.

Jason – JGOMAS Manual 31

8. Appendix: Execution of JGOMAS

To execute JGOMAS it is first necessary to run the manager and then the agents.

 Run the manager: Execute the following command or the file jgomas_manager.bat (Windows) or

jgomas_manager.sh (Linux):

java –classpath "lib\jade.jar;lib\jadeTools.jar;lib
\Base64.jar;lib\http.jar;lib\iiop.jar;lib
\beangenerator.jar;lib\jgomas.jar;student.jar;lib
\jason.jar;lib\JasonJGomas.jar;classes;.” jade.Boot -gui
“Manager:es.upv.dsic.gti_ia.jgomas.Cmanager(<number_of_agents>, <map>, <re-
fresh_time>,<duration>)”

Example:

java –classpath "lib\jade.jar;lib\jadeTools.jar;lib
\Base64.jar;lib\http.jar;lib\iiop.jar;lib
\beangenerator.jar;lib\jgomas.jar;student.jar;lib
\jason.jar;lib\JasonJGomas.jar;classes;.” jade.Boot -gui
“Manager:es.upv.dsic.gti_ia.jgomas.Cmanager(4, map_04, 125,10)”

The last line (in orange) represents the call to the manager agent, with the name Manager, the

class es.upv.dsic.gti_ia.jgomas.Cmanager and the following parameters:

 4: number of agents

 Map_04: name of the map

 125: refreshing time specified in milliseconds

 10: duration of the execution specified in minutes

 Run the agents: Execute the following command or the file jgomas_launcher.bat (Windows) or

jgomas_launcher.bat (Linux):

java -classpath "lib\jade.jar;lib\jadeTools.jar;lib\Base64.jar;lib
\http.jar;lib\iiop.jar;lib\beangenerator.jar;lib
\jgomas.jar;student.jar;lib\jason.jar;lib\JasonJGomas.jar;classes;."
jade.Boot -container -host localhost
"<lista_de_agentes>”

Example:

java -classpath "lib\jade.jar;lib\jadeTools.jar;lib\Base64.jar;lib
\http.jar;lib\iiop.jar;lib\beangenerator.jar;lib
\jgomas.jar;student.jar;lib\jason.jar;lib\JasonJGomas.jar;classes;."
jade.Boot -container -host localhost
"T1:es.upv.dsic.gti_ia.JasonJGomas.BasicTroopJasonArch(jasonAgent_AXIS.asl);T2:es.
upv.dsic.gti_ia.JasonJGomas.BasicTroopJasonArch(jasonAgent_AXIS_MEDIC.asl);A1:es.u
pv.dsic.gti_ia.JasonJGomas.BasicTroopJasonArch(jasonAgent_ALLIED_FIELDOPS.asl);A2:
es.upv.dsic.gti_ia.JasonJGomas.BasicTroopJasonArch(jasonAgent_ALLIED.asl)”

As in the case of the manager, the latest lines are used to define agents. In this case, there are

defined the agents T1, T2, A1, and A2. For example, in the case of the agent T1, its name is

represented with T1, its class with es.upv.dsic.gti_ia.JasonJGomas.BasicTroopJasonArch

Jason – JGOMAS Manual 32

and finally it is specified the .asl file where its code can be found, in this case jason-

Agent_AXIS.asl.

 Finally, to visualize the graphic engine the file run_jgomasrender.bat is executed, containing the follow-

ing instructions:

set OSG_FILE_PATH=../../../../data
JGOMAS_Render.exe --server <hostname> --port <integer>

Jason – JGOMAS Manual 33

9. Appendix: Available beliefs, actions, and objectives/plans available in
Jason-JGomas application

9.1. Available beliefs

tasks([])

Contains the list of active tasks of the agent. Ex:

tasks([task(1000,"TASK_GET_OBJECTIVE","Manager",pos(224,0,224),""),task(1001,"TASK_WALKING_PATH",
"A2",pos(204,0,228),"")])

In this example the list has two active tasks:

- task(1000,"TASK_GET_OBJECTIVE","Manager",pos(224,0,224),"") that indicates that has to get the ob-

jective (the flag) that is in the position pos(224,0,224). The priority assigned to this task is 1000.

- task(2000,"TASK_GIVE_MEDIPAKS","A2",pos(204,0,228),"") that indicates that has to go to the posi-

tion pos(204,0,228) where the agent A2 is waiting for medicin packs (the agent with this active task is

an agent). The priority assigned to this task is 2000.

task_priority(Task, Y)

Indicates the priority of each task of the agent. These values can be modified depending on what the agent

decides. Ex: task_priority("TASK_GET_OBJECTIVE",1000) indicates that the priority of the task

TASK_GET_OBJECTIVE" is 1000.

manager("Manager")

Indicates the name of the Manager agent. It is not required to be modified.

team(X)

Belief that indicates the team where an agent belongs to: “AXIS” or “ALLIED”

type(X)

Indicates the type of soldier that the agent is: "CLASS_SOLDIER", "CLASS_MEDIC" or "CLASS_FIELDOPS"

patrollingRadius(X)

Only to agents of the team“AXIS”. It is used to indicate the radius when patrolling. Initially is 64. The higher

the value, the further the agents will be of the object to patrol around.

fovObjects([])

Contains the list of objects currently seen by the agent. The structure of an object is [#, TEAM, TYPE, ANGLE,

DISTANCE, HEALTH, POSITION].

Example: [1,200,1,0.58,14.76,78,pos(214,0,219)], the object 1 of the team 200 (AXIS), type 1 (agent), with angle

0,58, with a distance of 14,76, a health 78 and its position is pos(214,0,219)

Note: The TEAM values are: 100 (Allied), 200 (Axis), 1003 (flag)

aimed("false")

Indicates that the agent has no enemy to aim.

aimed("true")

Indicates that the agent has an enemry to shoot.

Jason – JGOMAS Manual 34

medicAction(on)

Indicates that the medic agent is going to help

medicAction(off)

Indicates that the medic agent will not help

fieldopsAction(on)

Indicates that the fieldops agent is decided to help
fieldopsAction(off)

Indicates that the fieldops agents is not decided to help

objectivePackTaken(on)

Indicates that the agent has the flag

state(State)

This belief is used to indicate the state of the agent in his state machine: standing, selecting which task to do or

waiting; go_to_target, going to its next target; target_reached, it has reached the target; quit, has to finish.

current_task(Task)

Stores the current task. Ex: current_task(task(1000,"TASK_GET_OBJECTIVE","Manager",pos(224,0,224),""))

the current task is to get the flag in position 222,0,224

my_health(X)

Stores the health of the agent. The initial, and maximum, value is 100. When this value reaches 0, the agent

dies.

my_ammo(X)

Stores the amount of bullets of the agent. The initial value is 100.

my_position(X,Y,Z);

Stores the last position known by the agent.

objective(ObjectiveX, ObjectiveY, ObjectiveZ)

Stores the latest known position of the Guarda la posición última conocida del objetivo del agente

my_ammo_threshold(X)

Stores the threshold of bullets that the agent has to reach before asking for help or taking a decision. The initial

value is 50.

my_health_threshold(X)

Stores the threshold of health that the agent has to reach before asking for help or taking a decision. Initially, it

is 50.

debug(X)

Indicates the degree of verbosity of the agent between 1 and 3.

Jason – JGOMAS Manual 35

9.2. Acciones

update_destination(Destination)

This action modifies the destination of the agent when a new posible destination is calculated. For example, it is

used when it is decided to change the destination to chase an enemy.

move(Time);

This action is used to indicate the movement action during a time Time. Its usage is internal, it is not necessary

to use it.

check_position(Position)

It is used to check if a position is valid or not. After its execution, a belief is executed: position(X) where X can

be valid or invalid.

create_medic_pack

This action is used by medic agents to generate medicine packs. Its usage is internal, it is not necessary to use

it.

create_ammo_pack

This action is used by the fieldops agents to generate ammunition packs. Its usage is internal, it is not necessary

to use it.

9.3. Added internal actions

.my_team(type,list)

This action returns the list of available agents of your team through the yellow pages (DF) that are of the

type“type”. Ex: .my_team("medic_AXIS", E) executed by an agent of the“AXIS”returns the list E that con-

tains the members of its team.

The available services by default are:

- “AXIS”, offered by all agents of the AXIS team

- “ALLIED”, offered by all agents of the ALLIED team

- “medic_AXIS”, offered by all medic agents of the AXIS team

- “fieldops_AXIS", offered by all fieldops agents of the AXIS team

- “backup_AXIS", offered by all soldier agents of the AXIS team

- “medic_ALLIED”, offered by all medic agents of the ALLIED team

- “fieldops_ALLIED", offered by all fieldops agents of the ALLIED team

- “backup_ ALLIED ", offered by all soldier agents of the ALLIED team

.register("JGOMAS", "type")

It is used to register in the DF a service of the type“type”by the agent that executes it. Ex:

.register("JGOMAS", "medic_AXIS") registers in the DF the service “medic_AXIS”.

.send_msg_with_conversation_id(Rec, Perf, Cont, ConvId)

It is used to send a message with a conversation id (required by compatibility issues with the manager and the

rest of agents). Ex: .send_msg_with_conversation_id(ag1, tell, Content, "CFA") sends a message to agent

ag1, with the performative“tell”, with the content Content and with the conversation id“CFA”that means

Jason – JGOMAS Manual 36

Call for Ammo.

Jason – JGOMAS Manual 37

9.4. Objectives (Available objectives and plans that can be used but not modified)

!look

This objective is triggered for an agent to trigger the objects in its surroundings, and updates fo-

vObjects(ObjList), which can be used to check the closer objects. Its usage is internal it is not necessary to use

it.

!shot(0)

This objective is triggered when the agent decides to shoot.

!add_task(task(TaskPriority, TaskType, Agent, Position, Content))
!add_task(task(TaskType, Agent, Position, Content))

These two objectives are triggered to add a new task in the list of tasks of the agent.

9.5. Objectives (Available objectives and plans that may be modified)
!init

This objective is triggered once during agent initialization. Its associated plan can be used to introduce beliefs

or new objectives required for the designed strategy.

!update_targets

This objective can be used to update the tasks and its priorities. It is invoked when the agent changes to the

standing state and has to choose a new task among the available ones. It is necessary to implement the plan

associated to the creation of this event.

!perform_look_action

This object is invoked when the agent looks around and update the list of surrounding objects fovObjects(L).

It would be necessary to implement the plan associated to the creation of this event to be able look what is

around.

!get_agent_to_aim

This objective is invoked after !perform_look_action, and it would be used to decide if there is any enemy to

aim. An easy implementation of the associated plan is available. It is interesting to improve the mentioned as-

sociated plan to take a more refined solution about who to aim.

!perform_aim_action

This objective is triggered if there is an enemy to aim, which can be used to take a decision about what to do

with the aimed agent. An easy implementation of the plan is available. It is interesting to improve this plan to

take a more refined decision about who to aim.

!perform_injury_action

This objective is triggered when the agent is shot. It is necessary to implement the plan associated to the crea-

tion of this event to take a decision. For example, run if the agent has a low life value.

!perform_no_ammo_action

Jason – JGOMAS Manual 38

This objective is triggered when the agent shoots and has no ammo. It is necessary to implement the associat-

ed plan to take a decision. For example, to run.

!performThresholdAction

This objective is triggered when the agent has less life or bullets than the thresholds my_ammo_threshold(X)

and my_health_threshold(X). An easy implementation of the associated plan is available, which asks for help

to medics or fieldops of its team. It is interesting to improve the plan to take a more refined solution.

!checkMedicAction (Medics only)

This objective is triggered when a medic agent receives a help request. An easy implementation is available,

which decides to always help generating the belief medicAction(on). It is interesting to improve that plan to

take a more refined solution and sometimes to generate the belief medicAction(off), which makes the agent

to not attend the petition because it is not interested.

!checkAmmoAction (Fieldops only)

This objective is triggered when a fieldops agent receives a help request. An easy implementation of the asso-

ciated plan is available, which always decides to help, generating the belief fieldopsAction(on). It is interest-

ing to improve the plan to take a more refined decision and to sometimes generate the belief fieldop-

sAction(off), which makes the agent to not attend the petition because it is not interested.

!setup_priorities

This objective is triggered during agent initialization to fix agent task priorities. Each agent has its own priori-

ties. A simple implementation is available. It is interesting to modify it to add new tasks or modify the priorities

to have agents that behave in a different way.

+cfm_agree[source(M)]

This objective is triggered when it is received a message stating that medic help is coming. Agent M will attend

the request. It is not necessary to modify the plan but it could be interesting to modify it to refine agent behav-

ior.

+cfm_refuse[source(M)]

This objective is triggered when a message that denies medical help is received. Agent M has denied the re-

quest. It is not necessary to modify the associated plan but it could be interesting to refine the agent behavior

when help is denied.

+cfa_agree[source(M)]

This objective is triggered when it is received a message stating that ammo help is coming. Agent M will attend

the request. It is not necessary to modify the plan but it could be interesting to modify it to refine agent behav-

ior.

+cfa_refuse[source(M)]

This objective is triggered when a message that denies ammo help is received. Agent M has denied the request.

It is not necessary to modify the associated plan but it could be interesting to refine the agent behavior when

help is denied.

